Sensori intelligenti: dai big data agli smart data con l’Intelligenza Artificiale

 

Le applicazioni dell’Industria 4.0 generano un ingente volume di dati, i cosiddetti big data. Con il crescente numero di sensori e in generale di fonti di dati disponibili, l’immagine virtuale di macchine, sistemi e processi diventa ancora più dettagliata, portando naturalmente alla potenziale generazione di valore aggiunto su tutta la catena del valore. Allo stesso tempo, però, continua a presentarsi il problema di come estrarre esattamente tale valore, in fin dei conti i sistemi e le architetture per l’elaborazione dei dati diventano sempre più complessi. Solo i dati pertinenti, di elevata qualità e utili (smart data) consentono di sviluppare un concreto potenziale economico.

 

Sfide

Raccogliere tutti i dati possibili e archiviarli nel cloud, nella speranza che vengano successivamente valutati, analizzati e strutturati, è un metodo diffuso, ma non particolarmente efficace per estrarne valore. Il potenziale, nel generare valore aggiunto dai dati, rimane sottoutilizzato e trovare una soluzione in un secondo tempo diventa più difficile. L’alternativa migliore è fare delle considerazioni all’inizio per stabilire quali informazioni siano importanti per l’applicazione e in quale punto del flusso di dati sia possibile estrarle. Parlando in senso figurato, significa pulire i dati, ossia ricavare smart data dai big data sull’intera catena di elaborazione. A livello di applicazione si può decidere quali algoritmi di intelligenza artificiale (AI) abbiano elevate probabilità di successo per le singole fasi di elaborazione. La decisione dipende da alcune condizioni limite, quali dati disponibili, tipo di applicazione, modalità di rilevamento e informazioni di base sui processi fisici di livello inferiore.

Per le singole fasi di elaborazione, gestire e interpretare correttamente i dati è molto importante, per creare valore aggiunto reale dai segnali dei sensori. In base all’applicazione può risultare difficile interpretare correttamente i dati dei sensori discreti ed estrarre le informazioni desiderate, sulle quali spesso influisce direttamente il comportamento nel tempo. Inoltre spesso si deve tenere conto delle dipendenze tra più sensori. Per le attività complesse non è più sufficiente gestire i dati con valori soglia semplici o logica o regole stabilite a priori.

 

Algoritmi di intelligenza artificiale

ATTENZIONE: quello che hai appena letto è un estratto dell'articolo. Per continuare la lettura registrati oppure effettua l'accesso.

Post correlati

Commenta questo articolo